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ABSTRACT

A method is presented for solving certain systems of generalized
Abel integral equations by constructing equivalent singular integral
equations and their corresponding Riemann boundary value problems.

An application is then given to a class of simultaneous dual relations

of a type arising in bimedia fracture problems in elasticity. The

equations discussed in this paper generalize those considered in

an earlier paper of Lowengrub and Walton [3].




1. Introduction

In this paper we describe a method for solving systems of

generalized Abel integral equations of the type

x ay(tP)g, (t) 1 8,(tP)e,(t)

P rulind p a T e .
al(x ) (xp-tp)u‘ dt + bz(x ) / (tp-xp)u2 dt f'(x)
(1) 0<xc<]
8, (tP)s, (t) x ay(tP)e,(t)
p 1 1 dt p 2 2 ¥
b](x ) { (tp-xp)u] - az(x ) g (xp-tp) dt fz(x) i

Since only the cases p =1 or p =2 occur in applications, we shall
restrict the subsequent discussion to those cases.
The equations (1) are a generalization of those analyzed in [3] for

which R Y and ay = a, = sl = 82 = 1 . That reference also includes

a discussion of an application of such systems to problems in elasticity.

In particular, a method was presented in [3] for reducing a simultaneious

set of dual relations involving Hankel transforms to a simultaneous

system of fractional integral and differential operators. Under certain
conditions the systems obtained in that way were shown to be equivalent to one of
the systems of Abel type equations for which closed form solutions were ?
constructed in [3]. However, the conditions that must be imposed upon
such simultaneous dual relations to yield Abel systems within the scope

of the techniques of [3] are very restrictive.

B ———

In contrast, the method presented here is applicable to a very

large class of simultaneous dual relations. Unfortunately this is at the

expense of obtaining closed form solutions. What is achieved is a

. 1
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transformation of the dual relations to a system of singular integral
equations with Cauchy dominant singular part. Such systems have been
studied extensively. (See [2], [4].) For example, the Noether theorems
[4] answer the questions of existence and uniqueness of solutions to
such systems, and these systems are known to be equivalent to certain
Fredholm integral equations of the second kind. Recently, equations

(1) with p = 1 have arisen in the study of certain bimedia fracture
problems for power law viscoelastic solids. This application will be
the subject of a future paper.

Very few theoretical results for simultaneous dual relations have
appeared in the literature. The method described in this paper provides
a means of pursuing such investigations and is useful for obtaining
insight into the nature of simultaneous dual relations. For example,
applying the Noether theorems to the associated singular integral
equations, yields conditions necessary for the existence of a unique
solution. We do not attempt to present a rigorous analysis of the dual
relations considered here. However, it should be straight forward,
albeit tedious, to do so by justifying our formal manipulations within
the distributional framework employed in [6] and [7] or that developed
by Braaksma and Schuitman [1].

In Sections 2 and 3 we consider (1) for p=1 and p =2

respecitvely. Section 4 contains the application to simultaneous

“yal relations.




2. First Abel System

In this section we consider the generalized Abel system (1) with

p=1. It is assumed that
b |
(2) a;(t) = ag*(t)t
A
and Bi(t) = 81*(t)(l-t) i=1,2

where ui'(t) and Bi*(t) are continuously differentiable on [0,1]

and non-vanishing at the endpoints. It will prove convenient to

introduce the following notation:

(3) v,l' = mfn(O,vi) : )‘i' = m‘ln(O,)\i).
a;(t) = m,(t)t-vi (l-t)-xi :
% (0 = et (o)
i i ’
(5) 5,(8) = o,(t)e ! TP
x a,(t)e(t)
Ii“i) » '-(;.—t)—u'r— ’ ‘
(6) |
e 18;(t)e,(t) % ;
i X (t-x)u1 ;
x ¢;(t) :
(7 h » dt ’ ’l
) 1(x) !, (X-t)u‘ !
1 t Vik
(8) ki(x) = [ e dat , Bt

W ) "
x (t-x) 87
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(9) Ry(2) = [2(1-2)] 727"
and

dt

_] ‘ ;1(t)
(10) Qi(l) = [Ri(z)] g (t-l)ui

We seek solutions ¢1(t) , 1 = 1,2 such that

¢;*(t)

(m) . (t) =
e [t(1-t)) " Mi™C

where ¢1't) is HYlder continuous on [0,1] and ¢ is a positive number.

It follows that when a suitable branch is chosen for the multivalued
M5 =1
function [Ri(z)(t-z) i] ’ oi(z) is analytic in the complex plane

cut along [0,1] and satisfies the asymptotic estimates
0,(2) = 0(}) as z e
i z
ui‘]
0;(2) = 0(z5—) as 240
(12) and
N1-]

o,(z) = 0((1-2)_-2—) as 2-+1

We remark also that h,(0+) = k,(1-) = 1,(6;)(0+) = K,(¢,)(1-) = 0

and hi(l-) ’ ki(O#) y 11(¢1)(1-) and K,(¢i)(0+) are all finite.
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$
Let o, (x) denote the following limits:
+ 1
LY (x) = lim 0’(1)
2+x i
I.(z)>0 i
O<x<l !
8.7(x) = lim v(2) {
Z+X |
1,(2)<0 |
It is then readily verified that 1
) o, " (x)4+¢7(x)
| (e -1)
i
i °i+(*)*e \ .1 (X)
L (14) ki(x) = - ﬁliﬂi Ri(x)
§ (e -])
by
4
: From lines (2) - (5) we observe that L
' : "
A sin .1 t h,(y)dy §-}
(15) b (t) = i i
: . 0 (t-y) ™ s
' A 9
(16) . ’"'n"‘" : "‘(’):f ol
t (y-t)' "M ol o

Moreover, from (15) we obtain




’ (t)e.(t)d
1y{6,)(x) = :%t;:‘ﬁ:—t—-t-
x a;(t)e, (t)dt
Tl e
sin il x ag(t)dt  t hily)dy
A fo (x-t)" ]o (;:;;T:ET
sin wm x x  a(t)dt
- — /0 hy(y)dy ly ) gy
" sin TL
(17) = hy(x)ay(x) = —r— ]o hi (¥)K; 4 (x,y)dy

where

1 5;(S(x-y)*y)ds
0 (]-s)u1'Tsj'Ui

K]’i(x’Y) - [

It should be observed that K| i(x.y) is continuous for 0 <y < x <]
and integrable on the triangle o<y < x < 1.

Similarly, as a consequence of (16), we have

£ sin wh 1 \
(18) K1(¢1)(x) - kf(x)Bi(x) * n fx kf(]l xz’i(x9Y)dy

¢ where

i i 1 5;(s(y-x)+y)ds
; g, e [o (1-5) Mg =M

and Kz.,(x.y) is continuous for 0 < x <y <1 and integrable on

Ocxcyc<l.
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Substitution of (13), (14), (17), and (18) into (1) yields the

system
a,(x)a, ()R (x) [ wmi
) = ok [ o 00]
(e -1)
b,(x)8,(x)R (x) 1,111
- _2"2'“?12{1 s [02’()() + el2 ':2-(x)]
(e -1)
(19)
ai(x) sin u, 10l X [ u Qi A
- _mf—_u]—_ [ [e ' °]+(Y) + '3'] (Y)] R](Y)K] ](x.y)dy
(e -1)n . g
b,(x) sin wi  1r i
> __235ﬁ1____—- [ [oz (x)+e © o, (x)] Ry(¥)K, o(x,y)dy
(e -1 e i

b (x)é (x)R,(x) T | &
fz(x) cpko L 2“2;1 )] [4’]*()() te ’ ‘t']-(X)]
e -1

a,(x)a,(x)R,(x) i
(20) o 2:2"1 2 [euz 02+(x) + 'bz'(x)]
e ¢ -1)

_ by(x) sin yyn / 1 [o ‘) il %
_ R eEre 9 q R, (y)K ’
(e ¥ 38 " 1 1 VY ](.Y) 2.1(" y)dy

: az(x) sin Hll X

iy
;;23;5?;]) 2 fo [? o, (y) + ¢2(y)] Ry(Y)Ky o(xs¥)dy .
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It is straight forward to verify that solving the Abel system (1)
in the class (11) 1s equivalent to solving the generalized Riemann
system (19) and (20), i.e. to finding sectionally analytic functions
01(2) , 1 =1,2, satisfying (12) and the generalized boundary equations

(19) and (20).

The generalized Riemann problem (19) and (20) may be transformed,
in turn, into an equivalent system of singular integral equations
with Cauchy dominant singular part by a method outlined in Gakhov [2].

In particular, define

1 ¢ (t)dt
(21) Yi(l) 'ﬁ]r I -—;—t?z-)—- ’
0

and recall the Plemelj formulas [4]

. : ] ] wi(t)dt
(22) wi(x) =t zw(x) + 5 [
0

Substitution of (21) into (19) and (20) yields a system of singular

integral equations, which in matrix notation becomes
(23) K°(y) + k(y) = f,

where ¢ = (w],wz)T and f = (f],fz)T . The dominant singular 4,

part of (23), K°(y) , 1is given by

1
SORRCTORLOR Bt I

where A(x) = (‘1J‘“)) , B(x) = (b'J(x)) and




al(x)&](x)R](x)
ay(x) = — ™
2(e +1)

by (x)B,(x)Ry(x)

a;5(x) = T
2(eu2 +1)

by (x)E, (x)R; (x)
T
eu,ﬂ +1)

a5 (x) =
2(

a5 (x)dp(x)Ry(x)

ay,(x) = M
2(euz +1)

01(x)&](x)R](x)

il
e ! -1)

byy(x) =

2(
-b, (x)B,(x)Ry(x)
m

Z(euz -1)

-b](X)El(X)R](X)
U]ni
e L

byp(x) =

by (x) =
2( 1)
az(x)&z(x)Rz(x)
uzﬂi
2(e® -1)

byp(x) =

The operator k(¥) in (23) is easily seen to be compact. The theory
of systems of the type (23) is well known. (See, for example,
Muskhelishvili [4].) In particular it is known that (23) is equivalent
to a system of Fredholm equations of the second kind. In this sense we
may regard the above analysis as providing a solution of (1), although

§
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except for special cases, the solution is not obtainable in closed form.

We remark further, that when by = by s the dominant singular part of

(23), K°(y) , may be substantially simplified. Important theoretical
information about (1) may be obtained from (23). However, we shall
postpone a consideration of this until Section 4 when an application

of (1) to dual relations is discussed.

Section 4. Second Abel System.

We next consider the system (1) with p = 2 . The technique employed
for this case is in the same spirit as that of the previous section, with
only slight modifications made necessary by the substitution of the non-
univalent function z2 far 2,

As in Section 2, it is convenient to introduce certain notation.
Assumptions (2) and definitions (3) and (4) are unchanged. Whereas,
lines (5) - (10) are replaced by:

2v; A
(20)  (8) = ay(t) 10D,
2
x a;(t%)e.(t)dt
Li(e) = ! 1u
0 (x2_t2) i
(25)
Ki(6y) = 782y (e)at ’
. (£2-x2) "
i
O - ondmy e FSERE

o y
(xz_tz) i




n

'fﬁ

1 ¢i(t)dt
(27) ki(x) . germe . v A

x_(tZ_XZ) i

g 2
(28) Ry(z) = [2°-1]2 M
and

1 ¢, (t)dt
(29)  o.(2) = o ]
i . m IO (ZZ_tZ)u‘l

Instead of (11), we now seek solutions °i(t) such that

8(t)

. -y,
(30)  oy(t)t = Tie
[t(1-t)]

-y
When a suitable branch is chosen for (zz-tz) i/Ri(z), we see from (30),

that °i(z) is analytic in the complex plane cut along [-1,1] and

satisfies
01(2) = 0(-1—) as Z +w
(31)
2
and oi(z) = 0((:2-1) 1.2) as z++ 1.

Moreover, we may conclude that h1(0+) = ki(l—) = Ii(‘i)(°+) =

-~

Ki(‘i)(l') =0 and hi(l')a ki(o*)l Ii(Qi)(]‘) and K1(01)(0+) are

all finite.

“
#

il
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The limits 9%(x) are defined as before, only now they are computed
for -1 <x <1 . It is easy to show that when 0 < x <) ,

1
X Sy
(32)  hy(x) = [0}(x) + oj(x)] XL

1-
2 sin uin
and
3o
-y T u i W i
(33)  k(x)=-[e | of(x)+e’ o;() U=
i i i 2 stin wy
s
and when -1 < x< 0
(38)  oj(x) = - ¢%(-x)
From (26) and (27) we obtain
g sin gl t h;(y)dy
(35) ¢;(t) = —5 P Ryrae i
0 ,,2 2 i
(t%-y%)
sin 1 ki(y)dy
(36) = - 2t
n ¢ 0.2 20 Y
(y©-t%)

Corresponding to (17) and (18), substitution of (35) and (36) into
(25) yields

2 sin uiﬂ X
(37) li(‘i) N\ h‘(x)&i(x ) - i ] hi(’)yxl.i(xly)dy
(]

and
sin u'n

1
(38) Ky (o) = k() (xP) + — . ki(0yky ((xay)ay




s T

e R 35

where

(39)

and

(40)

13

1 d.(ﬂ(12-y2)¢y%dd
Ky (ay) =2 L —
] " 0 ui-TT'ui
(1-0) o

185 (alx?-y?)ey?)do
Kz.i(x'y) oy fo ui'1 1'U'i A
(1-0) o

Substitution of (37) and (38) into (1) yields a Riemann boundary

system valid for 0 < x < 1 which in matrix notation becomes

(41)

where

with

A(x) o*(x) + B(x) o (x) + K(e*) + H(s7) = f(x)

¥(z) = (0,(2) , o(2))T,
f(x) = (F(x) , F,0NT,
A(x) v (aij(x)) ’ B(X) » I(;T 5. K- (kij) and H = (hij)

A, 1
a,(x%)a, (x%) - u
el s *%-;Tag%;ﬁ" (aty®

b,(x%)8,(x?) B il
a)p(x) = - ‘%?ﬁz’uzﬁ‘ i %a !

2\% 1.2 1
5 (x) . b](x )B](x ) (]-xz)z i U] e-u]ﬂi
21 T2 sin i
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a,(x%)a,(x%) 3 - ¥
azz(x) = 2 e ﬁzn (]-XZ)? 2 ;
2 ]
a,(x“) «x - M
k(@) = - T [ a7 T yky (xay)dy
0o
b() oyt ] 22" ¥
kia#) = - =— -o: © [ o(y)(1-¥") yky o(x,y)dy ,
2n X .
by(x?) ~uymi 1 - u
(8 = - e T d(N0-y2 " Ty, 4 (xay)dy
X ’
and
a,(x?) «x $ -
kgal#) = = L— [ 012" Pty ey -

The kernel of the operator hij is conjugate to that of kij .

To establish the equivalence of (1) to a system of Riemann boundary
value problems it is necessary to extend the boundary equation (41) to

all of (-1,1) . However, from (34) and the fact that for 0 < x < 1

K(0+) + H(¢™) 1is real it is clear how the extension should be effected.

Specifically, if we define for -1 < x < 0

a;(x) = a;(-x) ,
by(x) = by(-x)

kij(O)(x) . kiJ(¢)('x) ’

ai(x) o b ai(-x) ’




Bi(x) » = Bi(-x)

and

fi(x) = f,(-x) ,
then

A(x) = - A(-x)
and

B(x) = - B(-x)

and (41) is valid for -1 <x < 1.
By an argument entirely analogous to that of Section 2, the intro-
duction of wi(t) through
1 y.(t)dt
0.(z) = 1 f i
1 m _] ‘t'z;
transforms (1) to an equivalent system of singular integral equations

with Cauchy dominant singular part. In the next section we consider an

application of (1) with p = 2 to certain simultaneous dual relations.

4. Simultaneous Dual Relations

In this section we consider an application of the analysis

presented in Section 3 to simultaneous dual integral equations of the

form

15

D E—
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[ TagMe) + by8(0)12% (ex)dk = F, (x)
0
0<x <]
J Taph(e) + b,B(£)16 720 (Ex)dE = Fy(x)
(42)
JMEDI (Ex)dr. = 0
l<x<m»

BN (600 = 0,
0

where a, b, ¢ and d are constants. As was remarked in [3], such
systems arise in bimedia fracture problems in elasticity. It was

demonstrated in [3] that the system (42) may be transformed into the
i system

a,K _G’V_A[n,] + b, Iv'g:!(nzl = f,(x)
2'2 0<x<1
(43)
L. . [0 +b, Kk [n,] = f,(x)
gl O s P ok
where

e

A= '%2‘(0'8) ’

AT R U

f(x) = 2% | (F(6)e72% x)
-

fx) = 228 1 (Fy(0)e%; x)
2"8"3




e
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and n and n, are unknown functions which vanish on (1,). The

operators appearing in (43) are the modified Erdelyi-Kober operators
introduced by Sneddon [5] and are defined as follows: if a > 0 then

ln.u and Kn.a denote the fractional integral operators

el = 2 =2n-2a (X, 2  2.a-1.2n+]
L alf(E)ix} = rroy x Io (x"=€")" "€ r(e)dE

Sagis o n (2 2\a-1,-2n-2a+] ;
Kn,a{f(E)'X} oy X { (8"-x")"" ¢ f(g)dE;
whereas, if a <0, I and Kn » are the fractional differential

n,a

operators inverse to In+u’_a and Kita,-o Tespectively.

The system (43) may be regarded as a generalized Abel system.
As was indicated in [3], only special cases of (43) fall within the
class of Abel systems considered in that paper and for which simply
closed form solutions are obtainable. In contrast, we show here that
the full problem (43) may be treated by the methods of Section 3.
Although this approach does not provide, in general, closed form
solutions of (42), it does offer a means of obtaining useful theoretical
information regarding the questions of existence and uniqueness.
Moreover, the system (42) is ultimately reduced to a system of
Fredhoim equations of the second kind.

Two observations regarding the general character of the system (43)
may be made immediately. The first is that both fractional integral and

differential operators appear in (43). In particular, the four operators




e QT A P ey

consist of two fractional integrals and their inverses. The second
observation is that only when a = 8 does it occur that the unknown
functions, n; » appear in operators of the same order, i.e. in
(43) the two integral operators have the same order and thus also their
inverses. As will become apparent later, this greatly affects the
tractibility of (43).

Without loss of generality we may assume v > u . Also, for
simplicity we shall first assume that « = 8 and v - p< 2,
which still includes all the physically interesting cases. Later, we
shall indicate the necessary adjustments in the analysis to be made
when these assumptions are relaxed.

Given these restrictions; equations (43) become

44 0 A
(44) a g _a’_?k[”]l 'b 2'H%”[‘2 f (x)
0 <x <1
a, I%'!iﬁ[n]] + b, x% '_a’%ﬁ[.,z] = f,(x)
Introduction of
A\
o) = 2 () | = 1z, () =t

vy = (1v)/2 - a and B,(t) =1

yields, in the notation of Section 3,

2xH-2a

W Ky e Il WGz )

18
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and

(46) 1 [n,] = -2

o

It should be noted that a, and B, » defined by (4), are now only

1,(e) -

19

power functions and that one of them is identically one. Moreover, the

kernels K]’] and K, 1 in (37) and (38) are easily seen to be given

by

0 vy < 0 .
(47) sin u,m ;:

1 K'I 1(X.y) : ; L_. : 3 ’ : 3
: 2(v,-1) 2.2
2v, (1-uy )x ZF](l-v],Z-u];Z;——;Z—)v] >0,
4 BRE SR 0 <x <
and : : Y
-2(v,41) 2 2
1 =X

=20, (1-1,)y Fy(l4vy,1,32; D<x<y

(48) e u] 11 - bl 3aa LTy ) '

Ky, 1(xy) =

0 \’]20,0<y<x.

Since solutions are sought for which the operators in (44) yield
continuous functions,it follows that t“nz(t) must vanish for x = 0

and x = 1 . Hence we deduce that

2,'7 4

(49) 1§ E%_ [n,] = -11:T;:;y727 [ (X -t ) at [t ﬂz(t)]dt

and

vy < 0




e SRRl TIPS

20

(50) K [n,] = e ] (tz 2) - ¢ [t “"n (t)]d
) u=v n2 I‘H-(v-uﬂﬂ Ix . dt 2 t.
3 - ain

Define v, = 2*21 -a . If v, =0, we define
0,(t) = %; [t%n,(t)] 4 ap(t) = 1, By(t) =1 and y, = ¢

and observe that

u
(51) I¥ . E?Inzl : W 15(9,)

and

xV-2a
(52) K > a.%![nz{' F(r__u;)' K2(¢2) )

N <

where 1,(¢,) and K2(¢2) are given by (25).

v
If v, # 0, we define az(t) =t 2 and

-2v
op(t) =t 2 G [t'ny(t)]
and note that

-2v
tz"'"nz(t) =t 2t"n.‘,(t)

Line (51) is stil) valid but (52) must be amended. From the obvious
identity




-2v,-1
zo-uﬂz(t)] < @2(” o 2\’2 t ’2 [tvﬂz(t)]

%;[t
we obtain

-2
_xV-da

(53) K% oY 0] = REm) Ko(,)

-2v,-1 v

L ‘Lt
- €N
2
X (tZ_XZ)uZ
Moreover, it is straight forward to show that
-sin n, M 1 2yk,(y)dy
v e Vo 7.2 2
(54) t nz(t) e Gz(t ) l TR P
AR 2
(y*-t%)
1 Y &' 1,2y,
* ] 2kplydy | —z—éz—i—% -
A e

We must now consider separately the two cases vy > 0 and

v, < 0. For v, > 0 substitution of (54) into (53) yields

N
(55) K% " ’%! [ﬂz] - F?T_—u—z‘) K2(¢2)

1
- j Kz (.V) Ka'z (x,y)dy
X

21

.
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i
2v 21u,-1
o 2 ] y=2a
(56) K3.2(X-.V) m—z')' y X
2sin i ve® o 5 o
+ m r(z_uz) X (y“~x )
: 2 2
! X2+T z-xz)] 2 F(14v,, 1; 2- .—T'sy—:x—)—z—)d‘r -
- f i 20 R 2 “z[”_)ﬁ]
o W ] vy
T (1-1)
It should be noted that xV Ky 2(x.y) € J (0,1)x(0,1) and is continuous
for O0<x<yc<l1.
If v, < 0 we obtain
v-2a
57k, Ind = B Koley)
r(1- 2\"2
7% 2
1
x ’
with
i 2 v xv-Za -y 2 2
. - 2 2 1.y =X
; (58) K4'2(x,y) ‘T‘(‘T:u—zy— y 2F1(1+v2.u2.1.x;2—)
% Moreover, we have x"K4 2(x,y) € L](O.l)x(o.l) and continuous for o
¢

0<x<y<1. The expressions 12(02) and K2(¢2) appearing in

(51), (52), (55), and (57) are given by (37) and (38) with c?;
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0 \)2<0, OKXfy(]

Ky, 2(xs¥) =

E;%éligﬁl-x 2(vp-1) oF 1 (1995, 2-11532; 5Ei%3-) vy >0,
D<y<x<]
and
0 Vo 20 D<y<xed
Ky, 2(%y) =
=2v,(1- n -2 1 2 2
—:f,(,—;;ﬁl y (vpt1) Zpl(lwz,uz;z;y;?-)“z <0

B < <cy<ls

The subsequent observations are valid for all values of vy -

However, for definiteness we assume vy > 0 . Substitution of (37) and
(38) into (45), (46), (51) and (55) and from there into (44) yields a

generalized Riemann system of the type
(59) A(x) ¢(x) + B(x) o7(x) + K(s*,07) = f(x) 0<x<1.

Boundary equation (59) is then extended to all of (-1,1) by the method
of Section 3. Alternatively, (59) may be transformed into the system of

Z singular integral equations

% 1
% (60) S(x) w(x) + T(x) %f {4%%%%%2 +R(p) = flx) =-1<x<
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by introducing

1
1 t)dt
®(z) = 5pp I_]%{:%T— :

and

and E(w) is a Fredholm operator. Examination of the dsminant singular
part of (60), or equivalently the principal part of (59), yields important
theoretical information about (44). For example, the number of solutions
of (59) (and hence of (44)) is at least as large as the number of solutions

cf the dominant homogeneous singular equation

1
(61) S(x) y(x) + T(x) h} [ ; %%g%gx iy -

or its corresponding Riemann problem
(62) A(X) o*(x) + B(x) #7(x) = 0 .

Examination of (61) or (62) will thus provide conditions necessary for the
existence of a unique solution to the dual relations (42). It therefore
becomes necessary to compute the index of the system (62), which from the
general theory of Muskhelishvili [4], is most easily determined by actually
solving (62). This can be accomplished by transforming (62) in the usual

way [4] to a system of Fredholm equations of the second kind and then

iteratively constructing the solutions. However, in certain
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cases the technique presented in [3] for uncoupling systems of the type (60)
into two ordinary uncoupled Riemann problems will provide simple closed
form solutions. To decide the applicability of the method of [3] to (62)
we must examine more closely the matrices A(x) and B(x), the components

of which are given by A(x) = (aij(x)) ,» B(x) = A(;) , A(-x) = -i(;)

and on 0 < x <

2v,-v 1/2-y, T(yy) -uy,0i

ajx) = -a, x : [1-x2] ' ~—ﬁl— s '

2V,-1 1/2-u, T(w,)
a15(x) = by x 2 (157 g ——-2;'2 :

2v,y-u 2. 1/2-yy 1(iy)
ay(x) = a, X [1-x€] ——

2v,-u 1/2-u, T'(u,) -p,mi
ay,(x) = by x 2 [l-xz] ve —§ﬁg— 2

The first restriction to be placed on A(x) is that det(A)(x) # 0
(except perhaps for x =0, + 1 ). Hence it is assumed that

~Mi(p,+
(63) a, b, e (i)

+ azb] #0
Recalling that Mot = 1 , we see that (63) is equivalent to

(64) § = a, b2 - 3, b] #0.

It follows that when (64) holds, the system (62) is equivalent to

(65)  o'(x) = - 36(x) ¢(x) ,
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where G(x) = A”'(x) KTX = (g;5(x)) , 6(-x) = G(X] and on (0,1)
mi(p, -
931(x) = azb; +a;b, e o ,

v-u[]_XZ]u'l-uZ I l"2)

9]2(!) - b] bz X Fru—)-)—i sin uzn e

u] F(U])

=V _2"2-
[1-x%] (e

gzl(x) = -2y 2, X 4 i sinpn

922(x) = 9331%)

Uncoupling (65) requires finding a matrix P(z) analytic in the
plane cut along (-1,1) and such that

P(x) 6(x) P~'(x) = D(x) ke

where D(x) is diagonal. As was shown in [3], P(x) must be of

the form

glz(x) "’g]z(x) gzl(x)
P(x) = c(x)
9)2(x)  /81,(x)g5,Tx)

where c(x) 1is a scalar function. Since

“912(XJ92](xi = 2/sin y It sin wll a,ab.b,

the matrix P(x) has an analytic extension to the cut plane if and
" N
o v[]-XZ] 2 u]

only if x

has no branch point at infinity. Recalling
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that u, - by = 1 - (v-u) and 0 < v-p < 2 we conclude that (65) can

be uncoupled if and only if wv-u =1 . This condition is satisfied
by the systems arising in applications to bimedia crack problems in
elasticity [1]. When the restriction 0 < v-p < 2 is withdrawn, it
becomes apparent that (65) uncouples whenever v-u is an odd integer.
When v-u is an even integer, the original system (43) was shown in

[3] to reduce to a single linear ordinary differential equation. Hence,
it is apparent that (43), is much more easily analysed when v~p 1is an
integer than it is otherwise. Moreover, a simple closed form solution

is obtained whenever V] =V, = 0. It now is a simple matter to compute

the indices of the two uncoupled Riemann problems and obtain conditions
for the solvability of (44). In particular, the indices provide necessary

conditions for uniqueness to hold for the dual relations (42).

It remains to consider how removing the restrictions 0 < v-p < 2
and o = 3 affects the analysis of (44). Maintaining o = B8 but
allowing v-u to be any positive number does not affect the general
character of (44) and requires only minor alterations in the analysis
presented above. Since the calculations involved are rather tedius
we shall dispense with a detailed analysis of this case. However,
if a # 8 the behavior of (43) is substantially different from that
of (44). To illustrate the difference we shall consider (43) with
a > B , and for simplicity we assume 0 < v-ju < 2 . Note that in
this case v - X > 0, and we may define n to be the least positive

integer greater than v - A, i.e. n-1 <v-2<n. To avoid a case

argument we shall assume n-1 <v-A<n and n>2.




f The following identity is easily verified

J u-Zu
‘ K (n])

1
'E ; l (tZ_XZ)cx-B-ltdt
- a,V-

I‘(—ZH)F(Q-B) X

I (yZ 2 TE 28‘\)"’]

ny(y)dy .

AY)
T e -
Therefore, if we define v, E;- -8B, a(t) =t () =1,

W = 1 - .(."_E_E)_ and ¢1(t) = n](t) tZB-v*'l we obtain

-V
(66) 'y, v (M) = iy i)

and

w2a 1 e
(67) "; g F(lfu:)r‘(a-B) I ()BT ¢ ko)t

where I](¢]) and K](¢,) are defined as in (25).

Moreover, it is straight forward to show that

1
)k, () = BRI (P et (o)
= By A=V X
z W
and |
-u2 X -
(69) ng) o B | () T £V 1o, [£"28,(t)Jat ,
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where Dt . (%i'gf) . Now lot 02(t) o - D:[tza-unz(t)] » az(t) -1

az(t) =1 and My = 1-n+v-2, and let K2(¢2) and 12(02)

be as in (25). We then have from (68)

n_v-28
T ‘S - acelna) ﬂ’iluzx’ Ka(5)

and after some manipulation (69) becomes

Ny

Jog) Bx""2 X x 2 B 2 2he
(1) Il\; ’ %!(nz) " iy, s i Ttay [ Yiplep)dy /y (x°-t) © (t%y%)

Vi p-20+]

.t dt

i | =
: gx M2 P 2 277,02 2ui)2
. F(1-u, )Ty JT{v-2-1) £ yl,(,)dy fy(x -t%) © (t%-y%)

V-2t

X
3 f 12(¢2)K2'](x9y)dy ’
0

where

N TR PR Oy N

(41xV'2Q‘4(x2.12)a'8'] )

KZ.I(x'Y) g r(1-1,)r{a-g)

iﬁ%l K 0y%) 2Fq (o h%ﬂ X o ‘%ﬂ i(a-8)+1; "x:i ;
+2"1(""'("’?&")" iy 3 iy}-_u), i (a-8) ;-(—21-)-":' : B
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Once again a generalized Riemann boundary value problem equivalent
to (42) is obtained by substituting (32), (33), (37), and (38) into (43).
However, in this case the resulting system has a singular (or degenerate)

principal part. In particular, the system has the form
A(x) o (x) + B(x) o7(x) + k(e*,07) = F(x)

with A(X) s (a”(x)) ’ B(X) e m ’ a”(x) o a]z(x) =0 ’

2 /2-vy :
az](x) = azx °l(x Y(1-x ) /(F(l-u]) sin “1") and

n+1,v-26, - ol 2)'/2‘“2

azz(x) = bz(-1) /(r(l-uz) sin uzn) . It is now

apparent that A(x) and B(x) are not invertible and the methods of this
section do not effect a simplification of (43), or hence of (42). Evidently,
the behavior of (42) is substantially different for a =8 and a # 8 .

This 1s due to the fact that when o # B , the function " in (43) appears

in operators of different order, as does n, . For a =8 this does

not occur. That this is important is easily illustrated by considering
a single generalized Abel equation of the type

(72) .(x);ﬂlh"—+b(x)[ﬂﬂit—=f(x) 0<x<1.

O (x-t) X (tex) 2

Applying the methods of this paper to (72) shows that (72) is equivalent to
the singular integral equation

1
Alx) ¥(x) + B(x) I= A HULE L y) = Flx)

If T PR then
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A(x) = i tan %u (a(x)+b(x)) ,

B(x) = (a(x) - b(x))

and
k(p) =0 .
However, if My # Wy s SAY My > Uy then

A(x) = i tan ( % u]) a(x) ,

B(x) = a(x)
and
i k(')f()’

The integrals in (72) correspond to fractional integral operators of

order 1 - By and 1 - W, respectively. Thus, if the orders of the

operators in (72) are the same the essential structure of the equation
is governed by the functions a(x) + b(x) and a(x) - b(x) ; whereas

when the orders are different, the fundamental properties of (72) are

determined only by the coefficient of the operator of lowest order.

This is analogous to the characteristic behavior of a differential

equation being determined by the coefficients of the terms of highest
order.
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